Recognition of traffic signs based on their colour and shape features extracted using human vision models
نویسندگان
چکیده
Colour and shape are basic characteristics of traffic signs which are used both by the driver and to develop artificial traffic sign recognition systems. However, these sign features have not been represented robustly in the earlier developed recognition systems, especially in disturbed viewing conditions. In this study, this information is represented by using a human vision colour appearance model and by further developing existing behaviour model of visions. Colour appearance model CIECAM97 has been applied to extract colour information and to segment and classify traffic signs. Whilst shape features are extracted by the development of FOSTS model, the extension of behaviour model of visions. Recognition rate is very high for signs under artificial transformations that imitate possible real world sign distortion (up to 50% for noise level, 50 m for distances to signs, and 5 for perspective disturbances) for still images. For British traffic signs (n = 98) obtained under various viewing conditions, the recognition rate is up to 95%. 2005 Elsevier Inc. All rights reserved.
منابع مشابه
Detection and Recognition of Traffic Signs Based on HSV Vision Model and Shape features
A detection and recognition method of traffic signs is implemented based on traffic signs’ color and shape features. This method consists of image segmentation based on HSV color space, detection and affine transformation correction based on geometry features, extraction of eigenvector by using Gabor filter, Classification and recognition by Support Vector Machine (SVM). The above algorithms ar...
متن کاملIdentification of Houseplants Using Neuro-vision Based Multi-stage Classification System
In this paper, we present a machine vision system that was developed on the basis of neural networks to identify twelve houseplants. Image processing system was used to extract 41 features of color, texture and shape from the images taken from front and back of the leaves. The features were fed into the neural network system as the recognition criteria and inputs. Multilayer perceptron (MLP) ne...
متن کاملA Real Time Traffic Sign Detection and Recognition Algorithm based on Super Fuzzy Set
Advanced Driver Assistance Systems (ADAS) benefit from current infrastructure to discern environmental information. Traffic signs are global guidelines which inform drivers from near characteristics of paths ahead. Traffic Sign Recognition (TSR) system is an ADAS that recognize traffic signs in images captured from road and show information as an adviser or transmit them to other ADASs. In this...
متن کاملFacial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملVision Models Based Identification of Traffic Signs
During the last 10 years, computer hardware technology has been improved rapidly. Large memory, storage is no longer a problem. Therefore some trade-off (dirty and quick algorithms) for traffic sign recognition between accuracy and speed should be improved. In this study, a new approach has been developed for accurate and fast recognition of traffic signs based on human vision models. It applie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Visual Communication and Image Representation
دوره 17 شماره
صفحات -
تاریخ انتشار 2006